Validating a Multi-Domain Digital Endpoint Platform (NeuLogiq®) for Decentralized Alzheimer's Trials: Results from the CNS-101 Study

Brian Murphy¹, Alison Buick¹, Shannon Diggin¹, Ruth McKernan¹, James Rowe² and Laura Rueda-Delgado¹

¹Cumulus Neuroscience Ltd. ²University of Cambridge

Introduction

- AD trial endpoints that are sampled infrequently in clinics are subject to white-coat effects and day-to-day variability (Binder et al., 2009)
- Limited sensitivity of endpoints require long-duration and large-N trials to detect response to treatment
- Repeated longitudinal measurements can improve endpoint reliability, and increase statistical power to detect progression (Öhman et al., 2021)
- CNS-101 is a non-interventional observational study designed by a consortium of 10 pharmaceutical companies to test the feasibility and evidential power of the NeuLogiq® platform (McWilliams et al., 2021)
- NeuLogiq at-home digital tools may be more sensitive to cohort progression than current endpoints (e.g. ADAS-Cog)
- Sensitive digital endpoints could deliver streamlined trial designs (e.g. smaller cohorts), reducing burden on patients and clinical teams, saving time and money

Cumulus NeuLogiq® Platform for Use in Real-World Settings

Developed in collaboration with leading pharma companies and KOLs (below).

- **Cumulus provides full service:**
- Protocol / study / SAP design
- On-site training, off-site support Data reconciliation and
- Reporting and custom analytics

Audit ready including FDA 510(k), UKCA, HIPAA, GDPR, ISO13485.

Designed for and with patients and clinicians, deployed in Phase 0-1b CNS trials.

Secure automatic upload and QC. Real-time dashboard monitoring

of decentralized and home-based

data collection. Deployed to 4 continents, multilingual support with 12

Bristol Myers Squibb GSK J&J Liley SMSD

languages to date.

tests are designed to be highly repeatable, with large banks of non-repeating stimuli.

Cumulus cognitive and EEG / ERP

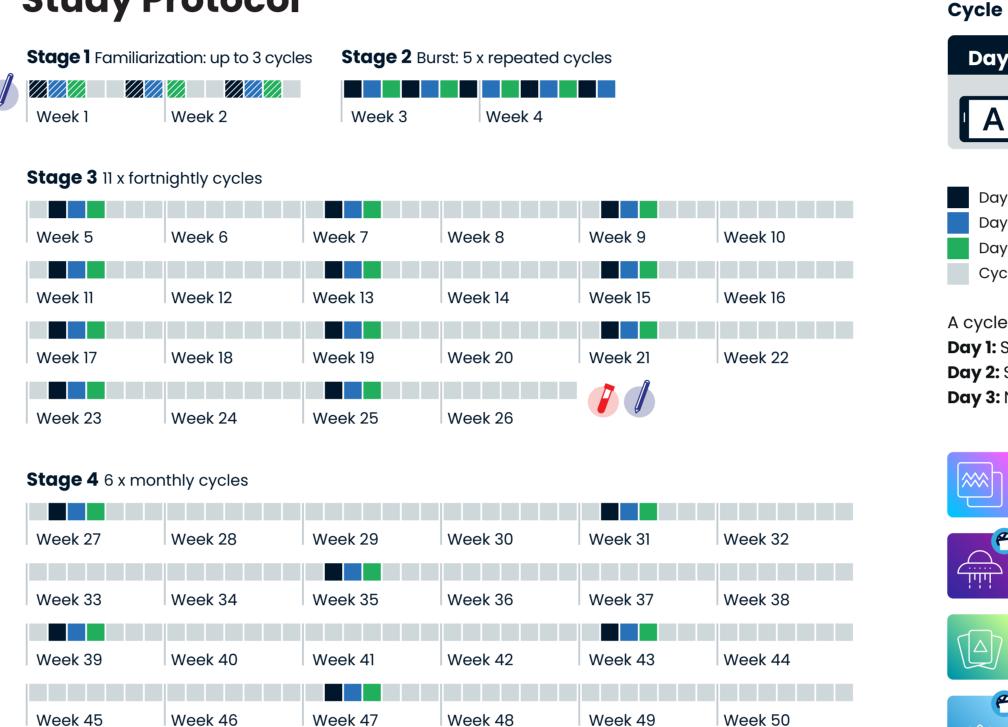
- Objectively administered and automatically scored
- Results (including EEG metrics) available in minutes, enabling remote monitoring and QC
- Suitable for detecting change over time

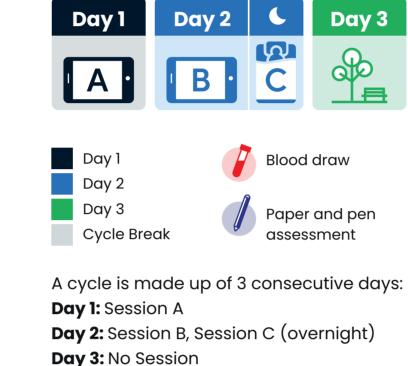
Memory Match: Visual associative memory

Digit symbol substitution/coding task

3 and 4

Methods


- Mild dementia patients (n=59, ACE-III scores >60 and ≤88) and controls (n=60, ACE-III scores >88) recruited at 7 UK sites
- Dementia patients had clinician opinion of AD, with subsequent evaluation on basis of p-Tau 217 plasma biomarker (Quanterix Simoa), using Ashton et al.'s single threshold (2024)
- ADAS-Cog 13 clinical composite endpoint was collected at months 0, 6, 12 (Figure 1), alongside other neuropsychological benchmarks
- NeuLogiq sessions lasted ~25 minutes in any one day, with 8 assessments on a mobile tablet split across two task lists. Functional behavioural tasks (memory, executive function, affective processing and language) were overlaid with synchronous wake-EEG
- Sleep EEG was recorded overnight using the Dreem headset


- The statistical analysis plan (SAP) pre-identified 41 digital endpoints as candidate markers of disease progression
- Cohort-level progression was modelled with linear mixed-effects to estimate group-by-time interactions
- Having identified promising NeuLogiq markers, bootstrapping and Monte Carlo simulations were used to estimate the power of streamlined study designs with smaller and larger numbers of participants (Green & McLeod 2015)
- · Sensitivity to plasma markers was visually examined on selected cognitive NeuLogiq markers
- Cost and time-saving projections were estimated for an illustrative 10-50% reduction in patient numbers, assuming costs to be proportional to the product of the number of participants and duration of study (DiMasi et al., 2024)

Study Protocol

Week 52

packaging

Acknowledgments

with benchmarks: Memory Match correlated with Verbal Paired Associates I at rho = 0.75 (p = 6.2e-19); Symbol Swap correlated with DSST at rho = 0.76 (p = 5.0e-20)

• CNS-101 patient adherence was high:

Study was powered for withdrawal of

dementia patients, 10% for controls

33%. Attrition rates were 18.5% -27% for

70% in Stage 2; 78-80% across Stages

Diggin et al, AAIC, 2024

The study was sponsored by Cumulus Neuroscience Ltd. and supported by Innovate UK (grant number 93826)

Results

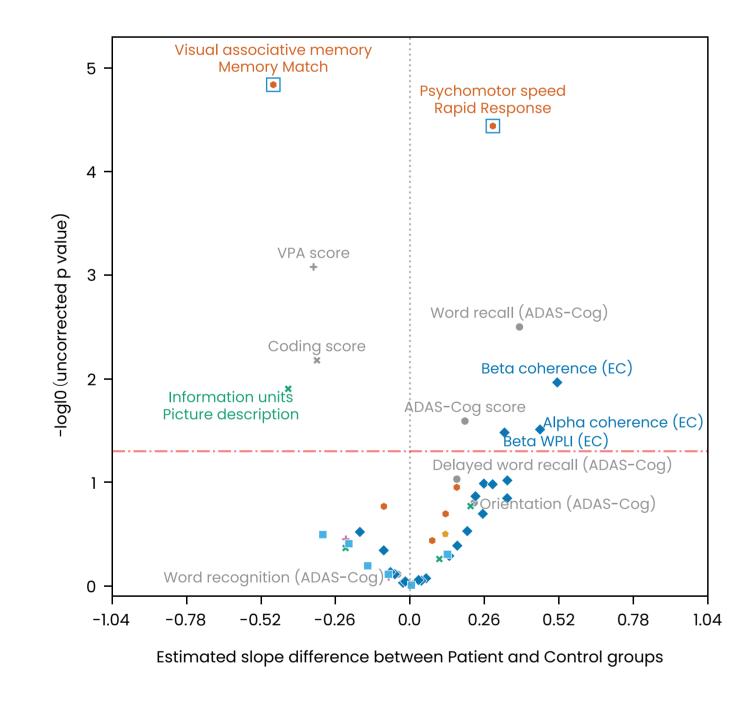
1. At-home digital endpoints sensitively track progression of dementia, relative to the registered endpoint

3. Digital endpoints reflect Alzheimer's Disease biomarker status

B. NeuLogiq endpoint

D. NeuLogiq endpoint

Figure 4: Benchmark (ADAS-Cog) over time (A) versus NeuLogiq digital endpoints ((B) executive function, (C) psychomotor speed


and (D) visual associative memory), with patients and controls split by p-Tau 217 status: 34 positive patients, 13 negative patients,

21 positive controls and 26 negative controls. Each point represents a measurement timepoint. All NeuLogiq measurements were

taken at home, without researcher supervision. Shaded areas correspond to 95% bootstrapped confidence intervals.

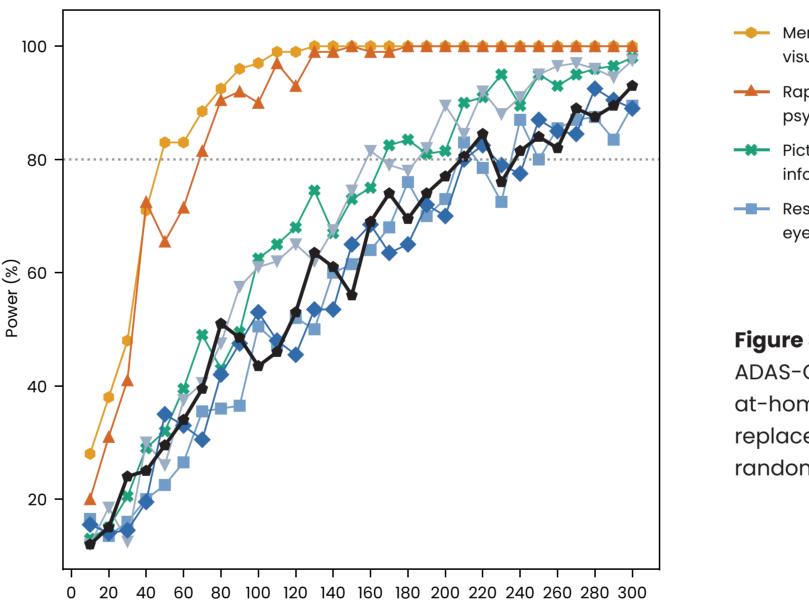
Symbol Swap: symbol coding, executive function

Memory Match: visual associative memory

ADAS-Cog 13: cognitive composite

C. NeuLogiq endpoint

Rapid Response: psychomotor speed


Months

Significance threshold In-person test NeuLogiq domain (uncorrected) ADAS-Cog Cognition -- p=0.05 EEG - Oddball task Coding DSS EEG - Resting State + Verbal Paired **Associates**

Figure 2: Volcano plot of group-by-time interaction estimate from linear mixed effects models, over 41 candidate endpoints from home-based platform, with In-person benchmarks for comparison. Top corners are regions of markers with larger effect size and power to detect differential progression between cohorts. Symbols outlined in squares denote the the Cumulus endpoints that survived correction for multiple comparisons. WPLI: weighted phase lag index. N=59 patients and N=60 age-matched controls at baseline.

2. At-home digital endpoints provide higher statistical power than ADAS-Cog, enabling leaner study designs

Figure 1: CNS-101 study protocol, showing scheduled sessions (coloured squares) across the 12 month observational

Total participants

study, and timepoints of blood draws and benchmark assessments.

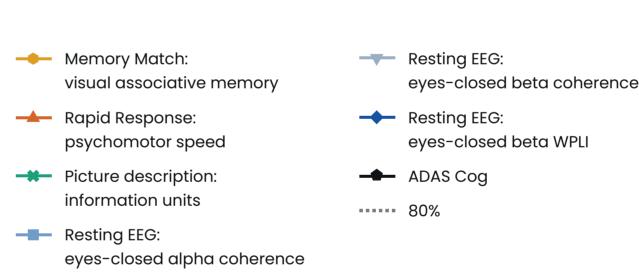
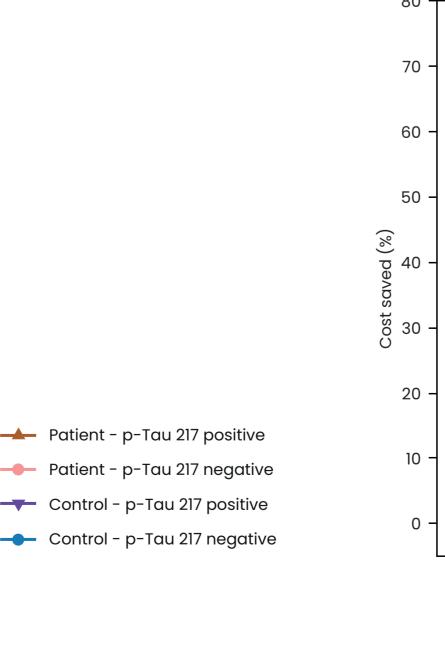
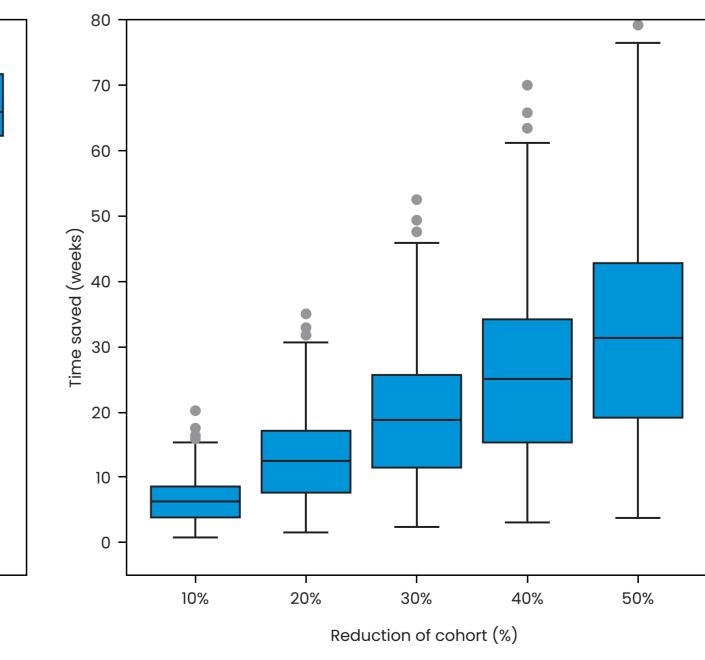




Figure 3: Simulated study power by cohort size of the ADAS-Cog benchmark compared to the strongest at-home digital endpoints. 100 random samples with replacement were drawn per cohort size, each with 100 random simulations of null hypothesis.

4. Smaller cohorts shorten trials and save up-front costs

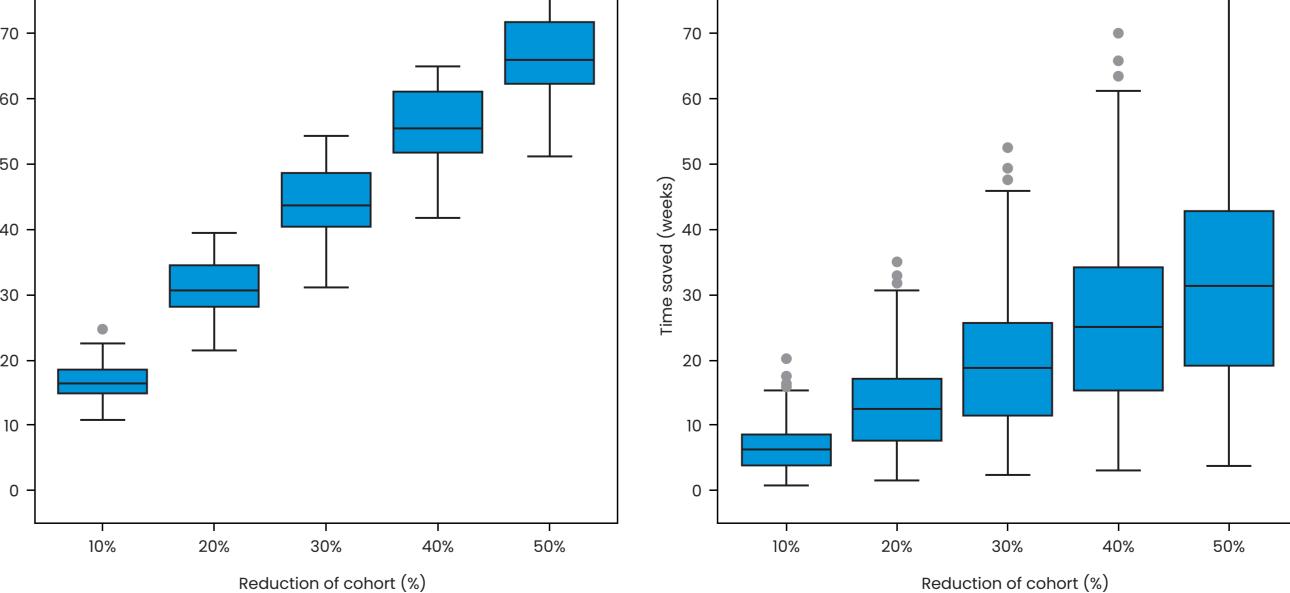


Figure 5: Percentage costs saved (left) and time saved (right) given a reduction in the cohort size. Reducing the cohort size by 50% yields median cost savings of 65.9% and median time savings of 35.2 weeks (8.1 months). Cost and time-saving projections were estimated using clinical trial information from 77 industry-led interventional phase 2 studies, July 2020 to July 2025, in Alzheimer's Disease from clinicaltrials.gov, and following cost estimation methods in DiMasi et al., (2024). Line in box shows the median, box shows interquartile range (IQR), whiskers show the point at 1.5x IQR, outliers are those past the whiskers.

Conclusion

- Brief but repeated home-based digital cognitive endpoints (~5 minutes) are more sensitive to change than the registered ADAS-Cog 13 composite
- Brief passive EEG markers and naturalistic language-based markers are similarly powerful to ADAS-Cog 13 (which takes ~45 minutes of clinician time to administer)
- NeuLogiq at-home endpoints showed greater separation with AD pathology (p-Tau 217) than the benchmark endpoint (ADAS-Cog 13) over the study time-course
- More sensitive endpoints could enable trial designs with smaller cohorts, which save on up-front costs, and reduce burden on clinicians and patients
- Today sponsors can use these measures to corroborate registered endpoints, and to inform adaptive study design decisions (e.g. a ph1b study that rolls-over to a ph2)

References

Ashton NJ, Brum WS, Di Molfetta G et al. Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology. JAMA Neurol. 2024;81(3):255–263. PMID: 38252443.

Binder LM, Iverson, GL, Brooks, BL. To Err is Human: "Abnormal" Neuropsychological Scores and Variability are Common in Healthy Adults. *Arch Clin Neuropsychol.* 2009; 24(1):31–46. **DiMasi JA**, Dirks A, Smith Z, et al. Assessing the net financial benefits of employing digital

endpoints in clinical trials. Clin Transl Sci. 2024; 17.8: e13902. **Diggin S**, Alexander-Sefre A, Murphy B et al. A longitudinal real-world study in patients with Alzheimer's Disease dementia using frequent multi-domain digital measurements at-home performed on the Cumulus NeuLogiqTM Platform: usability and feasibility

findings. Alzheimer's Dement. 2024, 20: e092164. Green P and McLeod CJ. Simr: an R package for power analysis of generalised linear mixed models by simulation. *Methods in Ecology and Evolution*. 2016; 7 (4): 493-498.

McWilliams EC, Barbey F, Dyer JF et al. Feasibility of Repeated Assessment of Cognitive Function in Older Adults Using a Wireless, Mobile, Dry-EEG Headset and Tablet-Based Games. Front Psychiatry. 2021;12(June):1–17.

Öhman F, Hassenstab J, Berron D et al. Current advances in digital cognitive assessment for preclinical Alzheimer's disease. Alzheimer's Dement (Amst). 2021;13(1):1–19.